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Phase 

~-Selenium 

fl-Selenium 

Hexagonal 
selenium 

Table 1. Results of  calculations for selenium 

Van der Waals diameter in A from: 
Molecular 

Temperature Internal pressure Lattice strain 
°K x y z energy energy 
300 3"96 3"99 4"00 4"04 3"67 
0 3"92 3"94 3"96 3"99 3"63 

300 3.95 3"91 3-99 4"00 3-57 
0 3.92 3"89 3.91 3"95 3.56 

300 3"78 3"77 3"74 3"82 3"49 
0 3-68 3.68 3.65 3-73 3"41 
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Discrepancy Factors for Use in Crystal Structure Analysis* 
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Theoretical expressions for two types of discrepancy factors have been obtained for crystals containing 
both heavy and light atoms in the unit cell. One of the discrepancy factors is defined in terms of the 
structure amplitude and is called the Booth's reliability index (RD. The other discrepancy factor (denoted 
by R2) is based on intensities. While the expressions for R2 can be used for crystals of any space group 
and for crystals containing any number and type of atoms in the unit cell, those for Rn can be used 
only for crystals in the triclinic and a few monoclinic space groups. 

1. Introduction 

In this paper  we shall obtain theoretical expressions 
for the discrepancy factors RB and R2 [suggested by 
Booth (1945) and Wilson (1969) respectively] for crystals 
containing both heavy and light a toms in the unit  cell. 
In the s tandard  notat ion,  these reliability indices can 
be defined as 

RB= ~ (IFol-If~])2/~ Ifol 2 (1) 
hk l  hkI  

R2= E ( I ° - I e ) Z / E  I2o" (2) 
hgl hkl 

The interest in RB lies in the fact that  it is closely 
related to the quanti ty being minimized in the usual 
least-squares method (Buerger, 1967). The theoretical 
expressions for R2 can be obtained under  more general 
conditions than for any other R indices (Wilson, 1969). 

Owing to the difficulties in the theory, we shall obtain 
different expressions for the R indices which are ap- 
plicable under  different circumstances. 

When the atoms in the model  structure]" are com- 
pletely correct we shall call it the related case and when 
all the atoms in the model are completely wrong we 
shall call it the unrelated case. When the model  
consists of  some completely wrong atoms and the rest 
completely correct, we shall call it the semi-related 
case. When the coordinates of  all the a toms in the 
model  suffer finite errors, we shall call it the imperfectly 
related case. For  simplicity of  notat ion,  we shall use 
R, UR, SR and IR to denote the related, unrelated,  
semi-related and imperfectly related cases respectively. 
It is obvious that  the R and UR cases are limiting 
cases of  the IR case. We can also think of  the R and 
UR cases as limiting cases of  the SR case. 

* Contribution No. 342 from the Centre of Advanced Study t The model structure need not include all the atoms in the 
in Physics, University of Madras, Madras, India. unit cell. 
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2. D e r i v a t i o n  o f  the theoret ica l  express ions  
for the R2 index  

(a) SR  case when there are no errors in the intensity 
data 

Consider a crystal (of any space group) containing 
N atoms in the unit cell. Let the known part consist 
of  P atoms and let Q ( = N - P )  be the number  of un- 
known atoms. Of the P atoms that  constitute the model 
structure, we shall assume that  there are a few wrongly 
placed atoms (say, Pw in number),  so that  the number  
of correctly placed atoms in the model will be P -  
Pw(= Pr, say). With this nota t ion we can write for a 
given reflexion that  

FN = FI, + F o (3) 

Ff,= F~, + F~w . (4) 

Equat ion (12) holds good when the P group contains 
any number  and any type of atoms. The case when the 
P group consists of heavy atoms in the unit  cell is im- 
por tant  in connexion with the heavy a tom method and 
in this case equation (12) takes a simpler form as 
shown below. 
(i) Related case. If  the heavy atoms were correctly 
located, we would have az~=o ,  a~,=a~ and zv,=z~, 
so that  (12) reduces to 

R~= 1 - [~(z~,2) + 2a~azz]/(z~). (13) 

(ii) Unrelated case. If  the heavy a tom locations were 
completely wrong, we would have a~, = 0, a~z~ = a z and 

_ _  ¢ z v ~ - z p  so that  (12) reduces to 

We can now rewrite (2) as 

R~= (([FN[ 2 -  [FgIZ)Z)/(]FNI 4) (5) 

where the superscript o is used to denote that  there are 
no errors in the observed intensities.* We can simplify 
(5) to obtain 

R~= 1 +[(IFf, I4)-2(IFNIeIFf, Iz)]/(IFNI 4) . (6) 

In order to simplify (6) we must first obtain an expres- 
sion for the expectation value of  IFNI21F~el 2 and this Number 
calculation is given in Appendix A. Making use of of 
(A7) in (6) we obtain P atoms 

R~= 1 +[(IFf ,14)-2{( lFv,14)+(lgv,  I z) {(lEvel z) 

+ ( I F o [ 2 ) } + ( l F w l  2) (IFNI2)}]/([FN[4). (7) 2 

For  further simplification it is convenient to introduce 
the normalized intensity variables m 

If[,[ 2 IFN[ 2 lEvi 2 
z~,= ([Fgl2) , z N -  ([FNI2) , z v =  ([Fvl2) . (8) 

It is also convenient to make use of the fractional con- 
tr ibution to the local mean intensity f rom the various 
groups of  a toms and these are defined below 2 

a ~ -  <IFpIZ> (lEVI2> a 2 -  (IF°12> 
(IFNI2) - (IFNI2) , ( I F N I 2 )  , (9 )  

(10) 
<lFv,12> < lgpwl2>  <lFp,,I2> 

d~,= <IFNI2 > , alzw= <IFNI2 > -- <IFNI2 > . 

It  is obvious that  

a~+trzZ=l ,  az~w+aZr=a ~ . (11) 

Making use of  equations (8) to (11) we can rewrite (7) as 

R~ = 1 + [a 4 (z~ z) - 2 {a4,(z~,,) + az,(a~w + a~) 

+a~. ,} l l ( z~) .  (12) 

* Unless stated explicitly, it will be assumed in general that 
the errors of observation in the intensity data are negligible. 

R~= 1 +[a4<z~,Z) - 2a [ l / ( z~ ) .  (14) 

Making use of  the values of  the higher moments  of 
(z~, 2) and (z~¢) (Parthasarathy,  1966) it is easy to obtain 
the expressions for R~ for the cases P = 2  and many,  
and they are summarized in Table 1 for convenience. 
The graph of  R~ vs. a~ is also shown in Figs. 1 and 2 for 
the centrosymmetric  and non-centrosymmetric  cases 
respectively. 

Table 1. Final expressions for  the R~ index for  the 
related and unrelated cases, where there are no errors in 

the intensity data. 

R case UR case 

I. Centrosymmetric crystal 
~z2(3 + a~) 3 -- 2a~ 
(1 - - 4 )  3(1 - - 4 )  

2 2 

1 a2(~r2+2) 1 + a2(3a2--2) 
3 3 

MC 

II. Non-centrosymmetric crystal 

~2 ~ 2 

4 4 

(1 - a 2) (1 - a2+ 2 4 )  

(1 + o~) (1 + o"~ ) 
2 2 

MA 1 a~ 1 z z 
- -  - -  a l  ~ 2  

(b) S R  case when there are random errors in the inten- 
sity data 

Let Io be the observed intensity for the reflexion H. 
Let If, be the calculated intensity for the reflexion H 
for the model structure which is assumed to consist of 
Pr correct atoms and Pw entirely misplaced atoms. 
Let e be the error in the observed intensity of the 
reflexion H and let ~ be the difference between the true 
(i.e. error-free) intensity of  the reflexion and the inten- 
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sity due to the atoms in the model  structure. That is 

e=Io-IN and d=IN--If, (15) 
where 

IN --IFNI 2 and I~ = IF~I z . (16) 

Making use o f  (15), (2) can be written as 

R2=((Io-Ic)Z)/(IZo) 
=((e+d)z)/((IN+e)2) . (17) 

We shall assume that the errors in the intensity are 
normally distributed with parameters (0, as) and that 
there is no correlation between the error and the inten- 
sity (see Wilson, 1969). Since e arises from inaccuracy 
in the data and d from that in the model,  we can treat 
e and ~ as independent random variables. Equation 
(17) therefore leads to 

R2=[~ + (d~)]/[(ID + a~]. (18) 
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Fig. 2. The variation of the R~ index as a function of a~ for 
the non-eentrosymmetric crystal. 
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Fig. 1. The variation of the R~ index as a function of the frac- 

tional heavy-atom contribution a~ for the centrosymmetric 
crystal. The solid lines are for the related case while the 
dotted lines are for the unrelated case. The symbols 2 and 
M near the curves denote the number of P atoms in the 
unit cell. 

Making use o f  (5), we can rewrite (18) as 

R2= [R~+ cr2r [1 a2 
(z~v~lN)~], / + (z~v) (lN)2 ] (19) 

where R~ stands for the reliability index when there are 
no errors in the intensity data, viz. that given by (12). 

(e) IR ease when there are random errors in the inten- 
sity data 

Consider a crystal belonging to the triclinic system. 
Let the model structure consist of  a large number of  
atoms in the P group with similar scattering power, so 
that Ff, obeys Wilson's (1949) distribution. Let Arj be 
the error in the coordinates o f  the a t o m j ( j =  1 , 2 , . . .  P)  
of  the model structure. It is clear that (18) holds good 
in this case also. In order to simplify (18) to obtain 
a convenient expression for the Rz index we must first 
obtain a suitable expression for (d z) and this can be 
done as follows: From (15) we obtain 

( d 2 ) = ( I g ) + ( , U v 2 ) - - 2 ( I N l f , )  . (20) 
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Since FN = Fe + Fo we can write 

(INIf,)= ((Iv + lo + 2 ]/(Ielo) ev,o.)lf,) = (IvIf,) 
+( Io)  (If ,) .  (21) 

Making use of (21) in (20) and further employing the 
normalized intensity variables we can rewrite (18) as 

= [(za ) + a,' ) - 2oIo - 2oI (Zl, Zf,) + a /(IN Yl 
(zg) + (ol/qNY) 

(22) 

It is known that (zNzf,) has values 1 + 2D z and 1 + D 2 
for the centrosymmetric and non-centrosymmetric 
crystals respectively (Parthasarathy & Srinivasan, 
1967). The quantity D is defined (Luzzati, 1952) by 

D = (cos 2 n i l .  Arj)e.  

It may be noted here that D is a measure of the r.m.s. 
error in the coordinates of the atoms in the P group. 
It is also well known that 

/ 3 for space group PT (Z2)= (Zp)=  
[ 2 for space group P1 (23) 

N 

( I n ) =  ~ f ~ = X ,  say.  (24) 
J = l  

Making use of these results in (22) we obtain 

R 2 

3 4 2 2 4a4D2 .~_(0-2/,~V'2) + a, - 2ala2 
for PT (25) 3 + (a2X/2) 

2(1 , 2 (o /zb -- 0",0" 2 --  olD ) + 

2 + (a~/X ~ ) 
- -  for P 1.  (26) 

3. D e r i v a t i o n  o f  theore t i ca l  e x p r e s s i o n s  for  the  RB i n d e x  

(a) Related and unrelated cases 
In this section, we shall consider a crystal belonging 

to the triclinic system with P heavy atoms of similar 
scattering power in the unit cell. Making use of the 
normalized structure amplitude variables, (1) can be 
rewritten as 

R~= 1 +a~-2a , (yny f , )  . (27) 

In the R case* YN and y~ are dependent random vari- 
ables while in the UR case they are independent. 
Hence we have 

YN ;Yf,) yf, P(yf,)dyf, for the R case 
(y~y~)  = fY~ ( (28) 

(YN) (Y~) for the UR case. (29) 

In (28), (YN;Y~) is the conditional expectation of yu 
for a given y,g. It is clear from (27) and (28) that the 
value of R~ depends on the number of P atoms and we 
shall consider here two cases, P = 2  and many. The 
expressions for (YNYf,) for these cases are worked out 
in Appendix B. Making use of (B7), (B9), (B 11), (B 12) 
and (B 14) in (27) we can obtain the final expressions 
for Rg for the R case. The expressions for Rg for the 
UR case can easily be obtained by making use of the 
expression for (YN) as obtained by Parthasarathy 
(1966). These results are summarized in Table 2 for 

2 is shown in Figs. 3 convenience. The graph of Rg vs. a t 
and 4 for the centrosymmetric and non-centrosym- 
metric cases respectively. 

* For the R case y f, tends to y;.  

Table 2. Final expressions for the R°n index for the related and unrelated cases, when there are no errors in the 
intensity data 

Number 
of 

P atoms 

2 a -  m 

M 

R case 

I. Centrosymmetric crystal 

8~1 a2 
7~3/2 2 F 2 ( - { '  1 ; ½ ' { ; - - r 2 )  

4 a-- - -  o"11o"2 + o'i sin-1 (al)] 
7~ 

UR case 

8r a -- --~-~ exp ( -- r~ ) [ lo ( r~ ) + a2 ll ( r-~ ) ] 

(a--~-~ -) 

MC 

MA 

II. Non-centrosymmetric central 

a--½(1 + 3a~) err (l/2r)-- ]//~-ala2 exp (-- 2r 2) 

a -- V(Zaa2,) 

a--2o'1 [E(O'l) -a2z-~- K(o'I)] 

21/2 
a-- -1/- ~- O-lO'22F2(--½,½; 1,1; --2r2) 

a - ~  

~o- 1 a ~  
2 

Where a = (1 + a]) and r = al/a2 

A C 28A - 5 
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(b) IR  case when there are no errors in the intensity data 
We shall consider the case when P =  many, so that 

F~ satisfies Wilson's distribution. It is clear that equa- 
tion (27) holds good in this case also. Making use of 
the results in equations (A13) and (A19) of Parthasa- 
rathy & Srinivasan (1967) and following the method 
outlined in Appendix B, it is possible to show that 

2re [an+an sin -1 (aA)] for C (30) 
(YNyf,) = 

E(aa)_ 2_a~ k(aa) for N C  (31) 

where a a = a l D  and an= 1/(1-a])  • (32) 

Making use of (30) and (31) in (27) we obtain 

1 + a 2 -  4al 1 R~= ~ -  [aB+aa sin- (aA)] for C (33) 

" [ a 2 k ( a A ) ] f o r N C  (34) 1 + a ~ - 2 a l  E ( a a ) - ~  

It is easily seen that equations in the rows (2) and (5) 
of Table 2 follow from (33) and (34) as particular 
cases if we put D = I  and 0 (i.e. R and UR cases) 
respectively. 

4. Discussion of the theoretical results 

It is easy to show that equations (16) and (37) of 
Wilson (1969) follow from (12) as particular cases. The 
expressions (12), (13), (14) and (19) hold good for any 
space group while (25) and (26) hold good only for 
tficlinic space groups. For a numerical evaluation of 
the R2 index from these expressions we must first 
evaluate the second-order moments of the normalized 
intensity variables. These moments actually depend on 
the space group symmetry of the crystal and by making 
use of the results of Foster & Hargreaves (1963a, b) it 
is possible to evaluate these moments for crystals 
belonging to the triclinic, monoclinic and orthorhombic 
systems. For the theoretical evaluation of the R2 index 
from (19) we must of course know the standard devia- 
tion of the errors in the measurement of the intensity 
data. Equations (25) and (26) hold good for space 
groups P]" and P 1 respectively and can be applied only 
to models which satisfy Wilson statistics. Making use 
of equations (25) and (26) [(33) and (34)] and the 
experimental value of the R2 index (Rn index) it is 
possible to obtain the value of D for any given model 
structure. From the value of D thus obtained it is 
possible to estimate the r.m.s, error (IArjl2) 1/~ in the 
coordinates of the atoms in the model. Since the 
procedure for obtaining the r.m.s, error in the coor- 
dinates of the P atoms from the value of D has already 
been described by Srikrishnan and Srinivasan (1968), 
we shall not describe it here. 

One of the authors (V.P.) thanks the University 
Grants Commission, India, for financial support. 

A P P E N D I X  A 

Simplification of <lrNI21r:q 2) 
Here IFNI and lEVI are correlated random variables. 
To obtain a suitable expression for the expectation 
value of lEvi 2 lEVI 2 it is convenient to think of the 
P group in the actual crystal structure as made up of 
two groups of atoms, viz. (i) the Pr atoms of the model 
structure and (ii) the rest of the atoms in the P group 
(of the crystal structure) which we shall call the P'r 
atoms. We can write 

F ~ =  Fp~ + Fe,, . (A1) 

Making use of (4), (5) and (A 1) we obtain 

(IFNlZlFf, I 2) = (IFpr + Fe,r + Fol 2 IFe, + Fewl 2) 

= ((IFM 2 + IF~,A 2 + IFQI 2 + 21FM IFp,,l~p,.p,~ 

+ 21Fe,A IFole~,,.o + 21FM IFolee,.o) 

x (IFM 2 + [Fpwl 2 + 21F, A IFp~l~r.e~)) • 
(A2) 

Here et.j stands for the cosine of the angle between the 
structure factor Fi and Fj (of a given reflexion) if they 
are complex or for the product of the signs of F~ and 
Fj if they are real. Since all the quantities in the right- 
hand side of (A2) are independent random variables 
it is obvious that 

:= ' (e l . j )=0  if i + j  for all i , j=Pr ,  P'r,Q, P w .  (A3) 
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Fig. 3. The variation of the R~-index as a function of a 2 for 
the centrosymmetric crystal. 
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It is also obvious that 

(ee,.p,,ee~.vw) = (eQ,P,eP,,e~)= (eQ.p,,ee,.vw)=O , (A4) 

since these are the products of the cosines of the angles 
which Fp~ makes with the independent structure factors 
Fp,, Fo and Fp~. Further since FN =Fp, + Fe,, + F o it 
follows that 

(IFp, I 2) + ([Fp.,[ 2 ) + (]FQIZ)= ([Fn[2). (A5) 

Since the number and nature of atoms in the P ' r  group 
and Pw group are the same it follows that 

(IFp,,12)= (lFew[2) . (A6) 

Making use of (A3) to (A6) we can simplify (A2) to 
obtain 

(IFNIZlFT,12)= <IFe, I4) + (IFM 2) {(IFpwIZ)+(IFQI2)} 
+ ([FNI z) (Igp,,,I2). (A7) 

APPENDIX B 

Derivation of expressions for (YNY~,) for the related case 

We know that (Parthasarathy, 1966) 

? 0 "  1F1(--1/2; 1; aZY~PZ] forNC (B1) 

(YN;Y~)= V 2 t r  2 IF1(--½;½; tr~y~Pz] ] for C (B2) 

1 0  
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Fig.4. The variation of the R~-index as a function of tr~ for 
the non-centrosymmetric crystal. 

where NC and C stand for non-centrosymmetric and 
centrosymmetric crystals respectively. The probability 
density function of y~ when P = 2  and many are well 
known and they are 

[ ~-2(1-y2C/2)-1/2, 0_<y~_<l/2 for~P=2 

p(y~)=  (B3) 

1/( /exp( 
(B4) 

(a) Non-centrosymmetric crystal 
Making use of (B3) and (B 1) in (28) and then using the 
substitution that y~2 = 2x we obtain the expression for 
(YNYf,) for the two-atom case as 

a2 !10 ( Y N Y f ' ) = - ~  (1-x)-I/21F1 ( - k ;  1., -2a~a22 x)  d x .  

(BS) 

Making use of equation (16) on page 47 of Sneddon 
(1961) in (B5) it is easy to show that 

(yNyf,) = a2 1FI - ½ ; 4 z ; - ~ 2 2  ) .  (B6) 

Making use of equations (2.2.1) on page 19 of Slater 
(1960) and (ll.iii) in page 46 of Sneddon (1961) and 
the result that a 2 + a 2 = 1 we can simplify (B6) to give 

a2 { - 2 a  2 ] (1 + 3a 2) erf (~2th ] 
( y N y ~ ) = - ~  exp \ a2 ] + 4al \ a2 / "  

(/~7) 

Putting n =½ in equation (A 19) of Parthasarathy & 
Srinivasan (1967) we can obtain the expression for 
(YNYf,) for the P =  MA case as 

n a~ 2F1(},}; 1" a~) (B8) (YNY~,)= -~ , • 

Making use of equations 3(ii) on page 43 and equations 
1(viii) and 1(ix) on page 42 of Sneddon (1961) we can 
simplify (B8) to obtain 

al k(al) (B9) (yNyf,)= E(a~)-- -~ - . 

Making use of (B4) and (B 1) in (28) and then using the 
substitution c2 that Ye =x  we can obtain an [expression 
for (YNY~) for the P =  MC case: 

S ( as 1F, -½;  1 " - - - -  x exp - (x /2)dx .  (YNYf')= 2--V ~ o ' tr~ 
(BIO) 

Making use of equations 17(i) on page 48 and 1(i) on 
page 42 of Sneddon (1961) in (B10), we obtain 

(y ,y~ )  = [(1 + a~)/2l 'n . (B l l )  

A C 28A - 5* 
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(b) Centrosymmetric crystal 
Making use of (B2) and (B3) in (28) and then using 

the substitution that y~Z=2x we obtain for the two- 
atom case 

( y N y f , ) = - ~  (1 -a~Z x)  dx 

4a2 
( -½,1"  (B 12) =-~/2 2F2 ,½,~; ~ / 

where we have made use of equation (16) on page 47 
of Sneddon (1961). Putting n=½ in equation (A 13) of 
Parthasarathy & Srinivasan (1967) we obtain for the 
many-atom case that 

2 
( y ,  yf,)= -~ 2F~ ( - ½ , - ½ ;  ½; a~). (B13) 

Making use of equation (7.4) on page 24, equations 
4(ii) on page 44 and 1 (vii) on page 42 of Sneddon (1961) 
we can simplify (B13) as 

2 
(yNy[,) = ~ [a2+al  sin -1 (a0].  (B14) 

In obtaining (B 14) we have also made use of the result 
that 

X 
tan-X (x) = s in- '  (]/(1 _ x2)) • 
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The Molecular Packing of Solid II Cydobutane by Means of Spectroscopic Data 
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The molecular packing of solid II cyclobutane has been calculated starting from the knowledge of the 
site symmetry (point group D2) and of two possible symmetries of the primitive unit cell (D2 and D2h 
factor group symmetry), derived from analysis of the infrared and Raman spectra. Crystal potential 
energy has been calculated for 13 orthorhombic space groups using the packing program written by 
Williams. The calculation was based on a pairwise potential of Buckingam type, widely tested on a 
large number of hydrocarbon crystal structures and properties. The energy was calculated as a function 
of the unit cell parameters (length of the cell edges), considering the molecules as rigid bodies and leaving 
the crystal symmetry unchanged. The results show the packing corresponding to space group Ccca to 
have the lowest calculated potential energy. The spectroscopic results allowed some changes to be made 
in the previous assignment of the fundamental frequencies of cyclobutane and cyclobutane-ds. 

Introduction 

Several low temperature infrared and Raman studies 
on molecular crystals have been carried out in recent 
years with the aim of determining the crystal structure 
when X-ray data were not available. In order to re- 
strict the choice of the possible structures compatible 
with the spectral data, simple closest-packing argu- 
ments and, when available, the comparison between 
calculated and observed density, have often been used. 

A different approach to this problem concerns the 
calculation of the structure using the structural in- 

formation obtained from the analysis of the crystal 
spectra. At any given temperature and pressure the 
most stable structure is governed by the arrangement 
of molecules that has the lowest free energy. Assum- 
ing the zero point lattice energy to be comparable for 
a number of possible close-packed structures, one can 
reasonably assume that the most probable structure is 
the one with the lowest calculated lattice energy. 

Cyclobutane offers an attractive possibility for this 
kind of investigation since: (i) the molecular geometry 
has been widely investigated; (ii) the molecule possesses 
only C and H atoms; (iii) infrared spectra in polarized 


